
Generalisation Process

The process involves the following steps:

To generalise institutional understanding from action

experience/observation we use a uniform structural representation

for both actions and institutions. act statements indicate actions,

aic and adic statements represent conventions and norms

respectively.

Generalisation

Individual action instances are generalised by removing individual

attributes (e.g. name, id) and grouped based on remaining

properties. Doing so we arrive at descriptive norms/conventions:

Value Aggregation

Feedback associated with individual generalised actions is

aggregated based on strategies such as rational (mean value),

opportunistic (extremal value), optimistic (most positive value), and

pessimistic (most negative value). Applying the rational

aggregation strategy, we arrive at valenced expressions.

Modelling Dynamic Normative Understanding 

in Agent Societies

Abstract

We introduce a data-driven approach to

norm generalisation using a unified

structural representation based on nADICO

[2], an extended variant of Crawford and

Ostrom’s Grammar of Institutions [1]. The

transparent process manages the trade-off

of providing a comprehensive representation

of normative understanding in artificial

societies, while offering an accessible

interpretation to researchers.

Nested ADICO (nADICO)

 Grammar Components

 Attributes (A): Actor attributes

 Deontic (D): Nature of Duty

(Prohibition, Obligation, Permission)

 Aim (I): Action or outcome

 Conditions (C): Circumstances of

actions (time, place, context).

Defaults to ‘at all times, at all places’.

 Or else (O): Consequence for non-

compliance as nADICO statement

 Institution Types

Institution types can be composed

based on different component

combinations:

 AIC: Convention/Descriptive Norm

 nADICO: Injunctive Norm/Rule

 Nesting

 Vertical Nesting: Substitution of ‘Or

else’ component by nADICO

statement (e.g. ADIC(ADIC))

 Horizontal Nesting: Combination by

logical operators and, or, xor, not
(e.g. ADIC and ADIC; ADIC or ADIC)

Discussion/Outlook

In this work we provide a flexible

generalisation process that allows complex

norm representations based on the

institutional grammar and builds on

transparent procedural steps aiming at

accessibility.

It has been applied to an example trader

scenario in which traders act according to

what they understand as the prevalent norm.

Future prospects include the extraction of

ontological understanding (e.g. based on

actor attributes) from derived norm

understanding.

Christopher K. Frantz

Martin K. Purvis

Tony Bastin Roy Savarimuthu

Mariusz Nowostawski

Department of Information 

Science,

University of Otago

New Zealand

Deriving nADICO Statements

In order to derive injunctive norms, we apply

the concept of Dynamic Deontics [3], which

facilitates the mapping of normative

understanding onto a continuous range

structured by deontic compartments with

attached labels (e.g. must not, should not).

The individual actions of the valenced

expression are decomposed into individual

actions and translated into nADICO

statements (details in paper [4]).

Assuming that -4 resolves to the deontic

compartment should not, the derived

injunctive norm is thus (literally):

‘Senders should not send goods, or else

Sellers should embezzle goods.’

For an example application and in-depth

discussion of individual steps, refer to the

paper [4].

References
1. S. Crawford and E. Ostrom. A Grammar of Institutions, The American Political Science Review, 89 (3), pp. 582-600, 1995.

2. C. Frantz, M. K. Purvis, M. Nowostawski, and T. B. R. Savarimuthu. nADICO: A Nested Grammar of Institutions, PRIMA 2013, pp. 429-436, 2013.

3. C. Frantz, M. K. Purvis, M. Nowostawski, and T. B. R. Savarimuthu. Modelling Institutions with Dynamic Deontics, COIN IX, pp. 211-233, 2014.

4. C. K. Frantz, M. K. Purvis, T. B. R. Savarimuthu, M. Nowostawski. Modelling Dynamic Normative Understanding in Agent Societies, PRIMA 2014.

act(attributes(Trader1, Seller), aim(embezzle, goods), 
c(act(attributes(Owner1, Sender), aim(send, goods), *))), -3

act(attributes(Trader2, Seller), aim(embezzle, goods), 
c(act(attributes(Owner2, Sender), aim(send, goods), *))), -5

aic(attributes(*, Seller), aim(embezzle, goods), 
c(aic(attributes(*, Sender), aim(send, goods), *))), -4

aic(attributes(*, Seller), aim(embezzle, goods), 
c(aic(attributes(*, Sender), aim(send, goods), *)))

adic(attributes(*, Sender), deontic(-4), 
aim(send, goods), *, 

adic(attributes(*, Seller), deontic(4), 
aim(embezzle, goods), *))


